Сила ветра это один из древнейших используемых человечеством источников энергии, которое, бесспорно, является одним из самых экономичных. Мореплаватели использовали силу ветра для морских путешествий под парусами еще за 3500 лет до новой эры. Простые мельницы были широко распространены в Китае 2200 лет назад. На Среднем Востоке, в Персии около 200 года до н.э. стали использоваться ветряки с вертикальной осью для перемалывания зерна. Первые персидские ветряки изготавливались из вязанок камыша, которые прикреплялись к деревянной раме, которая вращалась, когда дул ветер; стена вокруг мельницы направляла поток ветра против лопастей.
В XI веке в Европе начали распространяться ветряки завозились странствующими купцами и рыцарями из крестовых походов. Эти первые мельницы постоянно совершенствовались, сначала голландцами, затем англичанами, и наконец получили конструкции с горизонтальной осью. Жители Голландии обнаружили, что ветром очень удобно пользоваться для откачки воды, чтобы осушить землю, что для этой страны, расположенной в низовьях и поэтому страдает от наводнений, является очень актуальным. Наиболее активно в промышленному Европе мельницы использовались в XVIII веке, когда только в одной Голландии их было более ста тысяч. С их помощью мололи зерно, качали воду и пилили дрова. Впоследствии большинство ветряков, способных конкурировать с дешевым и надежным ископаемым топливом, были заменены паровыми двигателями. Однако и сегодня ветряки используются достаточно широко.
В истории Соединенных Штатов мельницы сыграли очень важную роль в освоении Запада Америки в конце XIX века.
Они были жизненно необходимы первым поселенцам Великих равнин. Ветряки поставляли воду на дорогу и пастбища, в места, удаленные от рек и источников воды. Позже ветряки стали использовать в удаленных от населенных пунктов хозяйствах для выработки электрической энергии. За последние 100 лет американцы создали более 8 миллионов ветровых установок для водопидняття, назначенных в большинстве случаев для пастбищ и скота.
В старых мельниц лопасти были деревянными и могли использовать около 7% энергии ветра. Благодаря новаторской работы Томас Перги, который в конце XIX века провел около 5000 экспериментов с разными видами «колеса» (т.е. ротора), деревянные лопасти уступили место лопастям из изогнутого металла, что увеличило эффективность установок вдвое — до 15%.
Энергия ветра вечно возобновляемая и неисчерпаемая, пока греет солнце. Ветер образуется на земле в результате неравномерного нагрева ее поверхности Солнцем.
Воздух над водной поверхностью в течение светлой части суток остается сравнительно холодным, так как энергия солнечного излучения расходуется на испарение воды и поглощается ею. Над сушей воздух нагревается благодаря тому, что она поглощает солнечную энергию меньше, чем поверхность воды. Нагретый воздух расширяется и поднимается вверх, а его заменяет холодный воздух от поверхности воды. Ночью суша охлаждается быстрее, чем вода, и температура над водой будет выше, чем над сушей. Поэтому ветры меняют свое направление, и холодный воздух суше вытесняет нагретый воздух водной поверхности.
Аналогично происходят изменения направления ветров в горной местности, где в течение дня теплый воздух поднимается вдоль склонов, а ночью холодный воздух спускается в долины.
Воздух циркулирует и вследствие вращения Земли: движение происходит в направлении, противоположном направлению движения часовой стрелки в северном полушарии, и по направлению движения часовой стрелки — в южном.
Что такое энергия ветра?
Часть солнечной энергии, которая достигает внешних слоев земной атмосферы, превращается в кинетическую энергию частиц воздуха, движущихся есть ветра. Кинетическая энергия ветрового потока равна
A = (m • v2) / 2,
где m — масса воздуха, движущегося кг
v — скорость ветра, м / с.
Энергия ветра имеет ряд специфических особенностей: малую концентрацию, отнесенную к единице объема воздушного потока; случайный характер изменения скорости, с другой стороны, повсеместное распространение этого источника энергии, слишком совершенные технические средства ветроэнергетики и их экономическая эффективность позволяют рассматривать его как дополнение к » большой «энергетики, прежде всего для обеспечения энергией потребителей в труднодоступных районах, удаленных от источника централизованного энергоснабжения.
Мощность ветрового потока определяется как
P = A /? =? ((F • v3) / 2),
где? — Плотность воздуха, кг / м;
F — площадь, которую пересекает ветровой поток, м2;
v — скорость ветра, м / с.
Ветровое колесо, размещенное в потоке воздуха, может в лучшем случае теоретически преобразовать в мощность на его валу 16/27 = 0,59 (критерий Бетца) мощности потока воздуха, проходящего через площадь сечения, охватываемую ветровым колесом Этот коэффициент можно назвать теоретическим КПД идеального ветрового колеса. В действительности КПД ниже и достигает для лучших ветровых колес примерно 0,45. Это означает, например, что ветровое колесо с длиной лопасти 10 м при скорости ветра 10 м / с в лучшем случае может иметь мощность на валу 85 кВт.
Окрестности, пригодные для размещения ветроагрегатов делятся на несколько классов (по типам неровностей). Такое разделение (см. табл. 1,) демонстрирует возможности обеспечения энергией ветроустановок в условных единицах (10 баллов соответствует отсутствию неравенств, то есть 0-й класс поверхности), по методике европейской практики строительства ветростанций.
Таблица 1 — Классификация ветрового потенциала местности по характеру неравенств
Класс нериввности |
Топография местности |
Энергопотенциал |
1 |
Открытая местность без высокой растительности и лесов |
6,8 |
2 |
Отдельные здания с расстоянием 1000м между ними |
4,6 |
3 |
Застроенный район, леса, пересеченная местность |
2,4 |
Оценка энергообеспеченности по баллам в зависимости от характера не всегда однозначна. Известно, что после застройки местности или после посадки деревьев ее аэродинамика может резко измениться, может увеличиться количество ветрового времени и вырасти сила ветра. То же касается и горной местности. Несмотря на значительные завалы в отдельных местах, пересеченность местности может образовывать нечто вроде каналов, в которых скорость ветра гораздо выше, чем на открытой местности.
Кроме среднегодовой скорости для каждой местности есть свой профиль скоростей, который, влияет на величину скоростного напора. Вот почему для эффективного улавливания ветра есть своя оптимальная высота расположения ветроагрегата над уровнем земли. Так же, как и для среднегодовой скорости, предварительно делаются исследования эффективной высоты расположения ветроагрегата при различных ветровых нагрузках и мощностях самого ветроагрегата.
Есть две принципиально разные конструкции ветроустановок: с горизонтальной и вертикальной осью вращения. Более распространены ветроустановки с горизонтальной осью.
Основными элементами ветроэнергетических установок являются витроприймальний устройство (лопасти), редуктор передачи крутящего момента к электрогенератора, электрогенератор и башня. Витроприймальний устройство вместе с редуктором передачи крутящего момента образует ветродвигатель. Благодаря специальной конфигурации витроприймального устройства в воздушном потоке возникают несимметричные силы, создающие крутящий момент. В зависимости от мощности генератора ветроустановки делятся на классы, их параметры и назначение приведены в табл. 2.
Таблица 2 — Классификация ветроустановок
Класс установки |
Мощность, кВт |
Диаметр колеса, м |
Количество лопастей |
Назначение |
Малой мощности |
15-50 |
3-10 |
3-2 |
Зарядка аккумуляторов, насосы, бытовые нужды |
Средней мощности |
100-600 |
25-44 |
3-2 |
Энергетика |
Большой мощности |
1000-4000 |
> 45 |
2 |
Энергетика |
Поскольку ветер может менять свою силу и направление, ветровые установки оборудуются специальными устройствами контроля и безопасности. Эти устройства состоят из механизмов разворота оси вращения по ветру, наклона лопастей относительно земли при критической скорости ветра, системы автоматического контроля мощности и аварийного отключения для установок большой мощности.
Ветроэнергетические установки с вертикальной осью вращения имеют преимущество перед установками с горизонтальной осью, которая заключается прежде всего в том, что исчезает необходимость в устройствах для ориентации на ветер, упрощается конструкция и снижаются гироскопические нагрузки, которые предопределяют дополнительное напряжение в лопастях, системе передач и других элементах установки .
Разновидностью ветроустановок с вертикальной осью является так называемая ветровая плотина, где сконцентрирован воздушный поток направляется на установку с помощью направляющих в виде лесополос, искусственных перегородок в виде панелей, надувных конструкций, соломенных блоков и т.п.