Среднегодовые скорости ветра Данные о среднегодовых скоростях ветра служат исходной характеристикой общего уровня интенсивности ветра. По величине среднегодовой скорости ветра в первом приближении можно судить о перспективности применения ветроэнергетических установок в том или ином районе.Однако необходимо иметь в виду, что скорость ветра зависит от рельефа местности, шероховатости поверхности, наличия затеняющих элементов, высоты над поверхностью земли. У разных станций эти условия могут существенно отличаться. Поэтому для сопоставления средних скоростей ветра на высоте их необходимо приводить к сравнимым условиям. Представляется целесообразным за сравнимые условия принять условия открытой ровной местности и высоту 10 м от поверхности земли. Суточный ход ветра представляет собой изменение средних скоростей ветра в течение суток. Наиболее четко он прослеживается в летнее время и мало проявляется зимой. Летом скорости ветра на высоте в дневные часы в среднем на 1,5-2,0 м/с выше, чем ночью. В условиях снижения общего уровня интенсивности ветра в летнее время дневной максимум скоростей ветра является благоприятным для эффективного использования энергии ветра, поскольку именно в дневные часы, как правило, наблюдается повышенная потребность в энергии со стороны потребителя.
Повторяемость скоростей на высоте и направлений ветра
Повторяемость скоростей ветра показывает, какую часть времени в течение рассматриваемого периода дули ветры с той или иной скоростью. С помощью этой характеристики выявляется энергетическая ценность ветра и находятся основные энергетические показатели, определяющие эффективность и целесообразность использования энергии ветра. В практике выполнения ветроэнергетических расчетов обычно выполняется аппроксимация (выравнивание) эмпирической повторяемости скоростей ветра с помощью различных аналитических зависимостей. Наибольшее распространение в этом плане получило двухпараметрическое уравнение Вейбулла. Расчеты показали, что уровень сходимости эмпирических (фактических) и аналитических распределений, полученных по уравнению Вейбулла, достаточно высок. На рис. показаны аналитические кривые повторяемости скоростей ветра при различных значениях среднегодовой скорости (от 4 до 12 м/с). Очевидно, что в более ветреных районах спектр наблюдаемых скоростей шире и доля высоких скоростей выше. Площадь под каждой из приведенных кривых одинакова, она равна 100% (или 8760 часов годового времени). Повторяемость направлений ветра показывает, какую часть времени в течение рассматриваемого периода (месяца, года) дули ветры того или иного направления. Правильный учет направлений ветра играет важную роль в определении оптимального расположения ветроустановок на местности.
Максимальные скорости ветра на высоте
Сведения о максимальных скоростях ветра являются важной составной частью ветроэнергетического кадастра. Они необходимы для выполнения расчетов на прочность отдельных узлов и элементов ветроэнергетических установок (башни, лопастей, устройств ориентации на ветер и др.). Ошибка в определении максимальных скоростях может привести либо к излишнему запасу прочности и утяжелению конструкции ВЭУ, либо наоборот, к созданию недостаточно прочных установок, следствием чего могут быть их разрушения. Определение максимальной скорости базируется на результатах наблюдений за прошлое время и представляет собой по сути прогноз на будущее. В прикладной климатологии о максимальной скорости ветра принято говорить как о скорости, возможной один раз в заданное число лет. На большей высоте скорости ветра возможны выше. Об этом свидетельствуют результаты зондирования атмосферы на аэрологических станциях. Однако ветер там отличается меньшей порывистостью. На высоте 100 м один раз в 10 лет может наблюдаться скорость ветра в порыве, равная 49-50 м/с. При переходе к повторяемости 1 раз в 20 лет значения максимальных скоростей увеличатся до 50-52 м/с на высоте 10 м и до 52-55 м на высоте 100 м.